вва 75776

SYNTHESIS OF ATP COUPLED TO Ca²⁺ RELEASE FROM SARCOPLASMIC RETICULUM VESICLES

RIVKA PANET AND ZVI SELINGER

The Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem (Israel)

SUMMARY

 ${\rm Ca^{2+}}$ release from sarcoplasmic reticulum vesicles was enhanced by the addition of low concentrations of ADP and P₁. The effect of ADP and P₁ was abolished in the presence of Mg²⁺. These findings lead to a study of ATP synthesis coupled with ${\rm Ca^{2+}}$ release by ethyleneglycol-bis-(β -aminoethyl ether)-N,N'-tetraacetic acid. It was demonstrated that one molecule of ATP is synthesized per two ${\rm Ca^{2+}}$ released from the sarcoplasmic reticulum. The high ratio of ATP synthesized per each ${\rm Ca^{2+}}$ released indicates that most of the ${\rm Ca^{2+}}$ leaves the vesicles through the pump system.

INTRODUCTION

Many biological membranes carry out an active transport of cations and create a large concentration gradient using the energy of ATP1. The chemiosmotic hypothesis predicts that these membranes would also be capable of using the osmotic potential for ATP synthesis during cation release2. Chemiosmotic syntheses of ATP were demonstrated with both chloroplast preparations, using a H⁺ gradient³, and erythrocyte ghosts, using a K+ gradient4. The question whether the Ca2+ pump of muscle will also confirm the prediction of the chemiosmotic hypothesis is of a particular physiological importance. The contraction-relaxation cycle of muscle is mediated through changes in Ca²⁺ concentration within the muscle cells⁵. In skeletal muscle a nerve impulse causes release of Ca2+ from a special membrane structure known as the sarcoplasmic reticulum⁵. Although Ca²⁺ release is the key step that changes Ca²⁺ concentration in muscle, relatively few studies were directed to elucidating the mechanism that controls the release of Ca²⁺ from the sarcoplasmic reticulum vesicles. It seemed especially pertinent to test whether the sarcoplasmic reticulum can utilize the Ca²⁺ gradient and synthesize ATP during Ca²⁺ release. The vesicular membranes derived from the sarcoplasmic reticulum of skeletal muscle can be isolated in a pure state. The only function known to be located in these vesicles is the ATPdriven Ca2+ pump6. With the aid of such Ca2+ precipitating agents as oxalate and phosphate, large quantities of Ca²⁺ can be stored in the vesicles, thereby creating a concentration gradient of several thousand. By the addition of ethyleneglycolbis- $(\beta$ -aminoethyl ether)-N,N'-tetraacetic acid (EGTA), a specific chelator for Ca²⁺,

Abbreviation: EGTA, ethyleneglycol-bis-(\beta-aminoethyl ether)-N, N'-tetraacetic acid.

a steep concentration gradient would be maintained even when large quantities of Ca²⁺ are released. This work demonstrates that indeed stoichiometric amounts of ATP are synthesized during Ca²⁺ release from sarcoplasmic reticulum vesicles, indicating that most of the Ca²⁺ leaves *via* the Ca²⁺ pump. While this manuscript was in preparation Makinose and co-workers^{7,8} published preliminary notes with some findings similar to those in the present paper.

MATERIALS AND METHODS

Isolation of sarcoplasmic reticulum vesicles and determination of ATPase activity were carried out as previously described9.

Determination of Ca2+ uptake

Ca²+ uptake assay was performed employing filtration through Millipore filters, essentially as described by Martonosi and Feretos¹0. The reaction system contained: ATP, 4.5 mM; MgCl₂, 5 mM; imidazole chloride buffer (pH 7.0), 5 mM; KCl, 100 mM; phosphoenolpyruvate, 4 mM; pyruvate kinase, 75 μ g/ml; ⁴⁵CaCl₂, 0.1 mM containing 2·10⁴ counts/min per ml. When indicated, oxalate was added to give a final concentration of 5 mM. Incubation was at 30°. The reaction was initiated by the addition of sarcoplasmic reticulum 50–500 μ g protein/ml and was terminated by filtration of 0.2-ml aliquots through 0.45 μ m Millipore filters using the 13-mm Swinnex Millipore filter holders. Ca²+ uptake was calculated from the difference in radioactivity between the unfiltered reaction mixture and the Millipore filtrate.

Determination of Ca²⁺ release

 Ca^{2+} release was initiated by the addition of EGTA in large excess of the total Ca^{2+} in the system, 0.5–5 mM. The Millipore filter technique and determination of Ca^{2+} radioactivity in the filtrate were as described under *Determination of Ca^{2+}* uptake. In experiments in which ATP synthesis was measured, phosphoenolpyruvate and pyruvate kinase were not added to the Ca^{2+} uptake reaction mixture.

Purification of sarcoplasmic reticulum on an anion-exchange column

Sarcoplasmic reticulum was purified from the nucleotide, phosphate and oxalate of the Ca²+ uptake reaction mixture on a Dowex-I column. A membrane preparation that had accumulated more than 95 % of the total Ca²+ in the system in the presence of 5 mM oxalate was put on a Icm \times 2 cm column of Dowex AG I \times 8 (100–200 mesh). Chromatography was carried out at 4°. The cloudy membrane fraction, usually of 5 ml, was collected within I-2 min with essentially complete removal of ATP, ADP, and P_I. The accumulated Ca²+ was not released during the procedure, as the Millipore filtrates before and after the chromatography contained identical amounts of Ca²+.

Measurements of $^{32}P_i$ incorporation into ATP during Ca^{2+} release

Ca²⁺ uptake was carried out in a system containing sarcoplasmic reticulum, 0.3–1 mg/ml; ATP, 4.5 mM; MgCl₂, 5 mM; KCl, 100 mM; imidazole chloride buffer (pH 7.0),5 mM; CaCl₂. 0.2 mM. Incubation time was 30 min at 30° leading to Ca²⁺ uptake of more than 95 % of the total Ca²⁺ in the system and hydrolysis of at least 99 % of the ATP in the system. Ca²⁺ release was initiated by the addition of EGTA to give a final concentration of 1 mM and 32 P₁ to give a specific radioactivity of 10⁵ counts/min per μ mole, glucose, 5 mM and hexokinase, 50 μ g/ml. Incubation was for 30 min at 30°. The reaction was terminated by the addition of an equal volume

of 10 % trichloroacetic acid and an aliquot of the supernatant was taken for extraction of P₁ by the method of Avron¹¹. Extraction of the trichloroacetic acid supernatant with diethyl ether and electrophoresis for 4 h at 20 V/cm in a system of 9.5 % butyric acid and 0.1 % NaOH (ref. 12) established that all the organic phosphate was located in a spot with the electrophoretic mobility of glucose 6-phosphate.

ATP and ADP were products of Waldhof Co. Carrier free $^{32}P_i$ was obtained from the Nuclear Research Center, Negev, Israel. Phosphoenolpyruvate was synthesized according to the method of Clark and Kirby and was converted to a potassium salt. Pyruvate kinase hexokinase and glucose-6-phosphate dehydrogenase were obtained from Boehringer Co. Analytical grade Dowex I \times 8 (Cl-form; (100–200 mesh) was a Bio-Rad product, and a non-ionic detergent Nonidet P40 (a condensation product of ethylene oxide) was obtained from B.D.H.

RESULTS

Effect of EGTA on Ca²⁺ release from sarcoplasmic reticulum vesicles

Increasing the concentration of EGTA in the system causes a faster rate of Ca²⁺ release from sarcoplasmic reticulum vesicles (Fig. 1). It is also demonstrated that the vesicles purified from ATP, ADP, P₁ and oxalate of a Dowex-1 column release Ca²⁺ at a much faster rate than do the unpurified vesicles. As EGTA is present

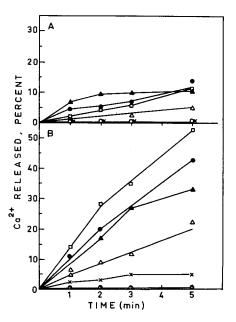


Fig. 1. [Effect of EGTA on Ca^{2+} release from sarcoplasmic reticulum vesicles. Ca^{2+} uptake was carried out in the standard Ca^{2+} uptake system in the presence of 5 mM oxalate and 0.3 mg/ml reticulum protein. After 90% of the Ca^{2+} was taken up by the vesicles (0.6 μ mole Ca^{2+} per mg protein) part of the system was purified from ADP, ATP, P_1 and oxalate on a Dowex-1 column (see MATERIALS AND METHODS). A. Unpurified sarcoplasmic reticulum. B. Sarcoplasmic reticulum purified on Dowex-1 column. At zero time EGTA was added to the system to give the following concentrations: $\bigcirc - \bigcirc$, no EGTA; $\times - \times$, 0.05 mM; $\triangle - \triangle$, 0.1 mM; $\triangle - \triangle$, 0.5 mM; $\bigcirc - \bigcirc$, 1 mM; $\bigcirc - \bigcirc$, 5 mM. Ca^{2+} release was measured as described under MATERIALS AND METHODS.

excess of the EDTA in the system.

TABLE I $\label{eq:theory} \text{TABLE I}$ The effect of ADP and P_i on Ca^{2+} release from sarcoplasmic reticulum

Ca²⁺ uptake and purification of the Ca²⁺-loaded sarcoplasmic reticulum on Dowex-1 column were carried out as described under MATERIALS AND METHODS. The purified sarcoplasmic reticulum vesicles containing 0.3 μ mole Ca²⁺ per mg protein were suspended in 50 mM imidazole—chloride buffer (pH 7.0) to give a concentration of 0.1 mg protein per ml. At zero time EGTA and EDTA were added to give final concentrations of 0.5 and 5 mM, respectively. When inidcated, ADP and P₁ were added with the EGTA and EDTA. Ca²⁺ release is expressed as a percent of total Ca²⁺ in the system.

	Ca^{2+} released (%)								
(min)	No ad- dition	$+ I \mu M P_i$	$+$ 10 μ M P_i	+ ι μM ADP	+ 10 μM ADP	$+$ 10 μM ADP and 10 μM P_i	$+10 \mu M$ ATP		
I	17	21	35	38	28	32	19		
2	29	36	44	44	37	44	29		
3	39	4 ^I	48	48	49	59	41		

TABLE II the effect of Mg^{2+} on Ca^{2+} release from sarcoplasmic reticulum vesicles. The experimental conditions are those of Table I. When indicated, Mg^{2+} was added in 5 mM

Time (min)	Ca^{2+} released (%)								
	No ad- dition	$+5~mM \ MgCl_2$	$^{+2o~\mu M}_{ADP}$	$+20~\mu M$ ADP and $5~mM$ $MgCl_2$	$^{+2o~\mu M}_{P_i}$	$+$ 20 μM P_i and 5 mM $MgCl_2$	+ o.5 mM ATP	+ 0.5 mM ATP and 5 mM MgCl ₂	
2	17	6	29	7	29	7	18	6	
5	33	11	43	16	42	19	35	II	

in the system in a large excess of Ca²⁺, it is possible that part of its effect is due to chelation of Mg²⁺ (cf. ref. 14).

Effect of ADP and P_i on Ca²⁺ release in the presence and absence of Mg²⁺

When Mg^{2+} is chelated by 5 mM EDTA, the addition of 1 μ M ADP or 10 μ M P_i causes a 2-fold increase in the initial rates of Ca^{2+} release during the first minute (Table I). The effect of P_i and ADP is not additive; addition of both ADP and P_i does not increase the rate of Ca^{2+} release over that achieved by either one separately. ATP fails to cause a significant increase in Ca^{2+} release. If Mg^{2+} is added in 5 mM excess over EDTA, no effect of ADP and P_i can be demonstrated and the rate of Ca^{2+} release is greatly reduced (Table II).

Incorporation of $^{32}P_i$ into ATP during Ca^{2+} release

The addition of 1 mM EGTA to sarcoplasmic reticulum vesicles loaded with Ca²⁺ phosphate results in an incorporation of ³²P₁ into ATP (Table III). Detergent added to the system either prior to or after the uptake of Ca²⁺ completely abolished

the incorporation of ³²P_i into ATP, indicating that this phenomenon is dependent on the integrity of the vesicles during Ca²⁺ release. When Ca²⁺ accumulation was carried out in the presence of oxalate a lower yield of ³²P_i incorporation into ATP was observed. Therefore all further experiments were carried out in the absence of oxalate. The incorporation of ³²P_i into ATP is in good correlation with the net increase in ATP measured with the aid of hexokinase and glucose-6-phosphate dehydrogenase (Table IV). The results indicate that the incorporation of ³²P_i into ATP represents a net synthesis of ATP and not an exchange reaction between ³²P_i and ATP.

Incorporation of $^{32}P_1$ into ATP at various concentrations of $CaCl_2$ The rate and total yield of $^{32}P_1$ incorporation into ATP as a function of initial

TABLE III

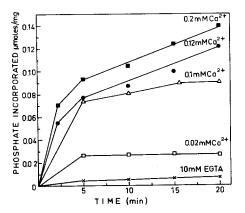
The effect of detergent on $^{32}\mathrm{P_{i}}$ incorporation into ATP

Ca²⁺ uptake was carried out in a system containing 1 mg/ml of sarcoplasmic reticulum protein. $^{32}P_{i}$ incorporation, Ca²⁺ uptake, and ATPase activity were determined as described under materials and methods. When indicated, Nonidet P40 was added to give a final concentration of 1 mg/ml. Ca²⁺ uptake and ATPase activity are expressed as a percent of the activity in the system to which detergent was not added. Under the experimental conditions essentially all the Ca²⁺ has been taken up. 0.2 μ mole Ca²⁺ per mg of sarcoplasmic reticulum protein. The Ca²⁺ storing capacity under these conditions (measured at a lower protein concentration) is 0.4 μ mole Ca²⁺ per mg protein.

Treatment	Ca ²⁺ uptake (%)	ATPase activity (%)	³² P _i incorporation into ATP (μmole/mg protein)
None	100	100	0.104
Nonidet P40 prior to Ca ²⁺ uptake	o	113	0.002
Nonidet P40 prior to Ca ²⁺ release	100	108	0.001

TABLE IV

the correlation between $^{32}\mathrm{P_{1}}$ incorporation and glucose 6-phosphate formation at various $\mathrm{Ca^{2+}}$ concentrations


The experimental conditions and $^{32}P_1$ incorporation were those described under MATERIALS AND METHODS using 0.7 mg/ml sarcoplasmic reticulum protein. Glucose 6-phosphate was determined by coupling with glucose-6-phosphate dehydrogenase (40 μ g/ml) NADP (7 mM), and Mg²⁺ (10 mM). The amount of glucose 6-phosphate was calculated from the absorption of NADPH at 340 mM.

Ca ²⁺ concn. during uptake (mM)	Glucose 6-phosphate formed* (µmole mg protein)	$^{32}P_i$ incorporation ($\mu mole/mg$ protein)		
0.05	0.101	0.090		
0.1	0.140	0.150		
0.2	0.184	0.187		

^{*} In the absence of EGTA, 0.2 μ mole glucose 6-phosphate per ml were formed. This blank amount was subtracted from the amount formed in the presence of EGTA.

Ca²⁺ concentration during uptake is shown in Fig. 2. At a higher initial Ca²⁺ concentration, leading presumably to a greater concentration of Ca²⁺ inside the vesicles, a higher yield of ³²P₁ incorporation into ATP is achieved. Addition of EGTA at a concentration of 10 mM before initiation of Ca²⁺ uptake prevents Ca²⁺ accumulation and accordingly abolishes ³²P₁ incorporation into ATP (Fig. 2).

Ca²⁺ concentration equal to, or slightly greater than, the total capacity for Ca²⁺ accumulation in this system gives rise to the highest yield of ³²P₁ incorporation into ATP. A further increase in Ca²⁺ concentration results in an inhibition of ³²P₁ incorporation into ATP (Fig. 3).

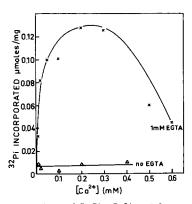


Fig. 2. Incorporation of \$^{32}P_1\$ into ATP at various concentrations of CaCl2. Ca2+ uptake was carried out in the same system as described under materials and methods, using 0.7 mg/ml sarcoplasmic reticulum and the indicated initial concentrations of CaCl2. Incubation was 5 min at 30°. Initiation of Ca2+ release, termination of the reaction, and determination of \$^{32}P_1\$ incorporation into ATP were the same as described under materials and methods, except that Ca2+ release was carried out at 20°.

Fig. 3. Incorporation of $^{32}P_{i}$ into ATP at various concentrations of $CaCl_{2}$. The experimental conditions were those described in Fig. 2, except that $^{32}P_{i}$ incorporation was determined after 30 min of Ca^{2+} release. The Ca^{2+} storing capacity of the sarcoplasmic reticulum preparation tested under these conditions was 0.2 μ mole Ca^{2+} per mg protein.

The stoichiometry between Ca²⁺ release and ³²P₁ incorporation into ATP

Previous work had shown that for each molecule of ATP that is hydrolyzed, two Ca^{2+} are translocated into the sarcoplasmic reticulum vesicles. It was therefore of interest to measure the stoichiometry between Ca^{2+} release and $^{32}P_1$ incorporation into ATP. At various concentrations of sarcoplasmic reticulum, a release of an average of 2.2 Ca^{2+} results in an incorporation of one molecule of $^{32}P_1$ into ATP (Fig. 4). This shows that most of the Ca^{2+} is released from the vesicles through the ATP-driven Ca^{2+} pump. Thus the energy used to create the osmotic potential is highly preserved by the sarcoplasmic reticulum vesicles. Incorporation of $^{32}P_1$ into ATP during Ca^{2+} release can be demonstrated with all sarcoplasmic reticulum preparations that are capable of Ca^{2+} uptake. The yield of $^{32}P_1$ incorporation into ATP is directly related to the Ca^{2+} storing capacity under the experimental conditions. An aged sarcoplasmic reticulum preparation that stores 0.15 μ mole Ca^{2+} per mg protein gives rise to one-third of the $^{32}P_1$ incorporation into ATP of that of a preparation that stores 0.40 μ moles Ca^{2+} per mg protein (Fig. 5).

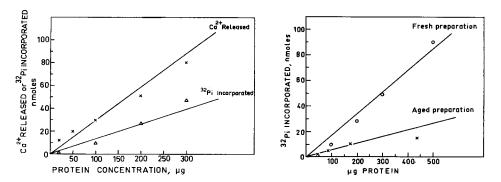


Fig. 4. The stoichiometry between Ca^{2+} release and $^{32}P_1$ incorporation into ATP. The experimental conditions are those as described under MATERIALS AND METHODS with the indicated concentrations of sarcoplasmic reticulum protein. Ca^{2+} release was determined as described under MATERIALS AND METHODS. The specific radioactivity of Ca^{2+} was determined by measuring total Ca^{2+} concentration by atomic absorption spectrometry.

Fig. 5. $^{32}P_1$ incorporation into ATP by sarcoplasmic reticulum preparations with different Ca²⁺ storing capacities. The experimental conditions of Ca²⁺ uptake and $^{32}P_1$ incorporation into ATP are those described under materials and methods. $\times -\times$, an aged sarcoplasmic reticulum preparation stored at -20° for 6 months had a Ca²⁺ storing capacity of 0.15 μ mole Ca²⁺ per mg protein: $\bigcirc -\bigcirc$, sarcoplasmic reticulum preparation stored at -20° for 1 month had a Ca²⁺ storing capacity of 0.4 μ mole Ca²⁺ per mg protein.

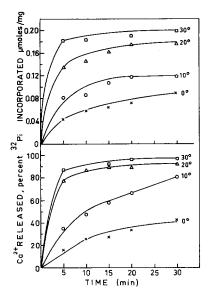


Fig. 6. The effect of temperature on the release of Ca^{2+} and incorporation of $^{32}P_{1}$ into ATP. Ca^{2+} uptake was carried out as described under MATERIALS AND METHODS, using a concentration of 0.5 mg sarcoplasmic reticulum per ml. During the uptake period the sarcoplasmic reticulum vesicles had accumulated 0.4 μ mole Ca^{2+} per mg protein. Aliquots were then transferred to separate tubes and Ca^{2+} release was initiated at the indicated temperatures. Ca^{2+} release was determined as described under MATERIALS AND METHODS and the release of Ca^{2+} is expressed as a percent of total Ca^{2+} in the system.

The effect of temperature on $^{32}P_1$ incorporation into ATP

Ca2+ release and 32P1 incorporation can be demonstrated at temperatures between o-30° (Fig. 6). Increased temperatures result in higher rates of Ca2+ release and ³²P₁ incorporation in a parallel manner. Under the experimental conditions of this work, part of the Ca²⁺ is in the form of calcium phosphate precipitate¹⁵. From the data of Figs. 4 and 6, it must be realized that both the free and the phosphate precipitated Ca²⁺ can be used for the generation of ATP during Ca²⁺ release.

DISCUSSION

The sarcoplasmic reticulum system is visualized by some investigators as a cation exchanger that binds Ca²⁺ more strongly in the presence of ATP^{5, 17}. The other mechanism that was put forth by HASSELBACH⁶ describes the Ca²⁺ uptake as an active transport process. The results of the present work indicate that the amount of ³²P₁ incorporation into ATP greatly exceeds the stoichiometric amount of phosphoprotein that can be formed in the system¹⁸. It is therefore much more difficult to ascribe a net synthesis of ATP to the mere dissociation of bound Ca2+. Two lines of evidence support a chemio-osmotic mechanism for ATP synthesis coupled with Ca²⁺ release. The first is the decisive role played by the structural integrity of the vesicular membranes in ATP synthesis (cf. Table III). The second is based on the finding that Ca²⁺ accumulating inside the vesicles as an osmotically inert calcium phosphate precipitate¹⁵ can also serve as a driving force for ATP synthesis (Fig. 6). Therefore, the sarcoplasmic reticulum has the advantage of being able to store a large osmotic potential in the form of an osmotically inert calcium phosphate precipitate. Addition of EGTA, in turn, releases Ca2+ gradually and gives very high vields of ATP synthesis. The sarcoplasmic reticulum seems to be unique in that it demonstrates the potential energy in an apparently osmotically inert calcium phosphate precipitate. This system seems to be superior to other ion transport systems with respect to the yield of ATP and the simplicity of conditions under which it is demonstrated. The high ratio of ATP synthesized per Ca²⁺ released indicates that most of the Ca²⁺ leaves the vesicles through the pump system. It is therefore possible that such a release mechanism also operates in vivo.

REFERENCES

- I R. W. Albers, Ann. Rev. Biochem., 36 (1967) 727.
- 2 P. MITCHELL, Biol. Rev. Cambridge Phil. Soc., 41 (1966) 445.

- A. T. JAGENDORF AND E. URIBE, Proc. Natl. Acad. Sci. U.S., 55 (1966) 170.
 I. M GLYNN AND V. L. LEW, J. Physiol., London, 207 (1970) 393.
 S. EBASHI AND M. ENDO, in J. A. V. BUTLER AND H. E. HUXLEY Progress in Biophysics and Molecular Biology, Vol. 18, Pergamon Press, Oxford, 1968, p. 123.
- 6 W. HASSELBACH, in J. A. V. BUTLER AND H. E. HUXLEY Progress in Biophysics and Molecular Biology, Vol. 14, Pergamon Press Oxford 1964 p. 199.
- 7 B. BARLOGIE AND A. MAKINOSE, Biochem. Z., 333 (1961) 518.
- 8 M. MAKINOSE AND W. HASSELBACH, FEBS Lett., 12 (1971) 271.
- 9 Z. SELINGER, M. KLEIN AND A. AMSTERDAM, Biochim. Biophys. Acta, 183 (1969) 19.
- 10 A. MARTONOSI AND R. FERETOS, J. Biol. Chem., 239 (1964) 648.
- 11 M. AVRON, Biochim. Biophys. Acta, 40 (1960) 257.
- 12 E. LEDERER AND M. LEDERER, Chromatography, Elsevier, Amsterdam, 1957 p. 229.

- 13 V. M. CLARK AND A. J. KIRBY, Biochemical Preparation, Vol. 11, Wiley and Sons, New York, 1966, p. 101.
- 14 A. Weber, J. Gen. Physiol., 52 (1968) 760. 15 A. Weber, R. Herz and I. Reiss, Biochem. Z., 345 (1966) 329. 16 S. Ebashi, J. Biochem. Tokyo, 48, (1960) 150.
- 17 A. P. CARVALHO AND B. LEO, J. Gen. Physiol., 50 (1967) 1327.
- 18 M. MAKINOSE, Eur. J. Biochem., 10 (1969) 74.

Biochim. Biophys. Acta, 255 (1972) 34-42